Pushrim biomechanical changes with progressive increases in slope during motorized treadmill manual wheelchair propulsion in individuals with spinal cord injury.

نویسندگان

  • Dany H Gagnon
  • Annie-Claude Babineau
  • Audrey Champagne
  • Guillaume Desroches
  • Rachid Aissaoui
چکیده

The purpose of this study was to quantify the effects of five distinct slopes on spatiotemporal and pushrim kinetic measures at the nondominant upper limb during manual wheelchair (MWC) propulsion on a motorized treadmill in individuals with spinal cord injury (SCI). Eighteen participants with SCI propelled their MWC at a self-selected natural speed on a treadmill at different slopes (0, 2.7, 3.6, 4.8, and 7.1 degrees). Spatiotemporal parameters along with total force and tangential components of the force applied to the pushrim, including mechanical effective force, were calculated using an instrumented wheel. The duration of the recovery phase was 54% to 70% faster as the slope increased, whereas the duration of the push phase remained similar. The initial contact angles migrated forward on the pushrim, while the final and total contact angles remained similar as the slope increased. As the slope increased, the mean total force was 93% to 201% higher and the mean tangential component of the force was 96% to 176% higher than propulsion with no slope. Measures were similar for the 2.7 and 3.6 degrees slopes. Overall, the recovery phase became shorter and the forces applied at the pushrim became greater as the slope of the treadmill increased during motorized treadmill MWC propulsion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trunk and Shoulder Kinematic and Kinetic and Electromyographic Adaptations to Slope Increase during Motorized Treadmill Propulsion among Manual Wheelchair Users with a Spinal Cord Injury

The main objective was to quantify the effects of five different slopes on trunk and shoulder kinematics as well as shoulder kinetic and muscular demands during manual wheelchair (MWC) propulsion on a motorized treadmill. Eighteen participants with spinal cord injury propelled their MWC at a self-selected constant speed on a motorized treadmill set at different slopes (0°, 2.7°, 3.6°, 4.8°, and...

متن کامل

ORIGINAL CONTRIBUTION Shoulder Muscular Demand During Lever-Activated Vs Pushrim Wheelchair Propulsion in Persons With Spinal Cord Injury

Background/Objective: The high demand on the upper limbs during manual wheelchair (WC) use contributes to a high prevalence of shoulder pathology in people with spinal cord injury (SCI). Leveractivated (LEVER) WCs have been presented as a less demanding alternative mode of manual WC propulsion. The objective of this study was to evaluate the shoulder muscle electromyographic activity and propul...

متن کامل

Effects of Upper Limb Exercises on Physical Capacity and Heart Function in Quadriplegics

Objectives: Wheelchairs are the prime mobility aid of persons with spinal cord injuries. Manual wheelchair propulsion puts a lot of demand on the cardiopulmonary as well as the skeletal system. The main purpose of the study was to compare the effects of both arm ergometry training and progressive resistance exercise training of upper limbs on resting heart rate and distance covered during wheel...

متن کامل

Pushrim biomechanics and injury prevention in spinal cord injury: recommendations based on CULP-SCI investigations.

Over 50 percent of manual wheelchair users with spinal cord injury (SCI) are likely to develop upper-limb pain and injury. The majority of studies related to pain have implicated wheelchair propulsion as a cause. This paper draws from a large multisite trial and a long-standing research program to make specific recommendations related to wheelchair propulsion that may decrease the risk of upper...

متن کامل

To What Extent Are Spatiotemporal and Handrim Kinetic Parameters Comparable between Overground and Wheelchair Simulator Propulsions among Long-term Manual Wheelchair Users?

A repeated cross-sectional research design was used in this study to compare propulsion biomechanics on a newly developed wheelchair simulator to overground natural propulsion. Seventeen individuals (15 men and 2 women) with spinal cord injury between T4 and T12 completed two 20-meter propulsion trials on a tiled surface and two 1-minute propulsion sessions on the simulator. The main outcome me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of rehabilitation research and development

دوره 51 5  شماره 

صفحات  -

تاریخ انتشار 2014